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Background: Simultaneously modulating individual neural oscillation and cortical excitability may be
important for enhancing communication between the primary motor cortex and spinal motor neurons,
which plays a key role in motor control. However, it is unknown whether individualized beta-band
oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and
excitability.
Objective: This study investigated the effects of individualized beta-band otDCS on corticomuscular
coherence (CMC) and corticospinal excitability in healthy individuals.
Methods: In total, 29 healthy volunteers participated in separate experiments. They received the
following stimuli for 10 min on different days: 1) 2-mA otDCS with individualized beta-band frequencies,
2) 2-mA transcranial alternating current stimulation (tACS) with individualized beta-band frequencies,
and 3) 2-mA transcranial direct current stimulation (tDCS). The changes in CMC between the vertex and
tibialis anterior (TA) muscle and TA muscle motor-evoked potentials (MEPs) were assessed before and
after (immediately, 10 min, and 20 min after) stimulation on different days. Additionally, 20-Hz otDCS for
10 min was applied to investigate the effects of a fixed beta-band frequency on CMC.
Results: otDCS significantly increased CMC and MEPs immediately after stimulation, whereas tACS and
tDCS had no effects. There was a significant negative correlation between normalized CMC changes in
response to 20-Hz otDCS and the numerical difference between the 20-Hz and individualized CMC peak
frequency before the stimulation.
Conclusions: These findings suggest that simultaneous modulation of neural oscillation and cortical
excitability is critical for enhancing corticospinal communication. Individualized otDCS holds potential as
a useful method in the field of neurorehabilitation.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ct current stimulation; CMC, corticomuscular coherence; tACS, transcranial alternating current stimulation; tDCS,
erior; MEP, motor-evoked potential; M1, primary motor cortex; EEG, electroencephalography; EMG, electromyography;
nial electrical stimulation; STDP, spike timing-dependent plasticity.
erapy, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
), d.tadaki.koseki@yachts.ac.jp (T. Koseki), katagirin.x907@gmail.com (N. Katagiri), d.kaito.yoshida@yachts.ac.jp
no), d.masafumi.jin@yachts.ac.jp (M. Jin), m-nitoh@med.id.yamagata-u.ac.jp (M. Nito), tanabes@fujita-hu.ac.jp
chi).

Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dkudo@yachts.ac.jp
mailto:d.tadaki.koseki@yachts.ac.jp
mailto:katagirin.x907@gmail.com
mailto:d.kaito.yoshida@yachts.ac.jp
mailto:d.keita.takano@yachts.ac.jp
mailto:d.masafumi.jin@yachts.ac.jp
mailto:m-nitoh@med.id.yamagata-u.ac.jp
mailto:tanabes@fujita-hu.ac.jp
mailto:t.yamaguchi.ja@juntendo.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.brs.2021.11.004&domain=pdf
www.sciencedirect.com/science/journal/1935861X
http://www.journals.elsevier.com/brain-stimulation
https://doi.org/10.1016/j.brs.2021.11.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.brs.2021.11.004
https://doi.org/10.1016/j.brs.2021.11.004


D. Kudo, T. Koseki, N. Katagiri et al. Brain Stimulation 15 (2022) 46e52
1. Introduction

Functional beta-band oscillatory coupling between the primary
motor cortex (M1) and spinal motor neurons of active muscles
plays a key role in motor control [1e6]. Synchronous oscillatory
brain activities can be measured using the coherence of electro-
encephalographic (EEG) and electromyographic (EMG) signals [7],
which represents an established measure of the integrity of the
pyramidal system [defined as corticomuscular coherence (CMC)]
[5,8,9]. Changes in CMC have been observed after the acquisition of
new motor skills in healthy individuals [1,6]. Another study
demonstrated that the enhancement of CMC is associated with
functional motor recovery in patients after stroke [10e13]. There-
fore, new strategies to enhance corticospinal oscillatory coupling
are required to improve motor learning and motor function re-
covery after stroke.

Transcranial direct current stimulation (tDCS) and transcranial
alternating current stimulation (tACS) can alter cortical excitability
and oscillation in the human cerebral cortex [14]. tDCS polarizes or
depolarizes neuronal membrane potential and increases or de-
creases cortical excitability in a polarity-specific manner [15,16].
tACS can entrain oscillations through the injection of sinusoidal
currents by shifting their phase or modulating their power at the
stimulation frequency [17e20]. Oscillatory tDCS (otDCS), which
includes elements of DC and AC, simultaneously modulates the
potential and oscillation activity of neuronal membranes [14,19].
These combined effects effectively determine the endogenous
cortical rhythms of the brain [21,22]. Thus, otDCS may represent a
useful modality for enhancing corticospinal oscillatory coupling.
However, to the best of our knowledge, no previous study investi-
gated the effects of otDCS on corticospinal oscillatory coupling, and
the mechanisms underlying these effects remain unclear.

To enhance corticospinal oscillatory coupling, otDCS generally
aims to match the intrinsic frequencies of oscillatory neural activity
in the target brain [19,23]. Several studies reported that tACS with
individualized frequencies enhanced the endogenous power of
brain oscillations during stimulation [24,25]. Additionally, mem-
brane voltage exhibited strong periodic fluctuations when the
driving frequency was close to the intrinsic frequency [14,26]. Thus,
we hypothesized that otDCS with beta-band CMC at the peak fre-
quency of each participant can increase corticospinal oscillatory
coupling and cortical excitability after stimulation. To clarify this
hypothesis, we investigated the effects of three brain stimulation
techniques (otDCS, tACS, and tDCS) on CMC and motor-evoked
potential (MEP) using transcranial magnetic stimulation (TMS).
We expected that otDCS would enhance corticospinal oscillatory
coupling and that both otDCS and tDCS would increase cortico-
spinal excitability [15,27,28]. In contrast, we did not expect tACS to
change corticospinal oscillatory coupling and cortical excitability
after the stimulation [29]. In addition, we investigated the impor-
tance of an individualized beta-band frequency as an otDCS
parameter by comparing the responses to the individualized fre-
quency with those resulting from the use of a fixed beta-band
frequency.

2. Material and methods

2.1. Participants

A total of 29 healthy volunteers (aged 25 ± 4 years; 12 women)
participated in Experiments 1, 2, and 3, each consisting of 19 (aged
25 ± 3 years; 8 women), 19 (aged 25 ± 3 years; 8 women), and 21
(25 ± 4 years; 9 women) healthy volunteers, respectively. The
sample size was based on a previous study that investigated the
effects of tACS on CMC [30]. None of the participants had a history
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of neurological and/or orthopedic diseases, and they were not un-
dergoing treatment with any medication that affected the central
nervous system. The participants were screened to identify
distinctive beta-band CMC during ankle isometric contraction
before starting the experiment because a previous study reported
that significant CMC was detected in 46% of participants [31]. All
the participants provided written informed consent prior to
participation in the present study. The study protocol was approved
by the local ethics committee of the Yamagata Prefectural Univer-
sity of Health Sciences (approval number: 1860e06), and the study
was performed in accordance with the ethical standards of the
Declaration of Helsinki.

2.2. General experimental procedure

Three experiments were conducted to investigate the effects of
individualized otDCS frequencies on CMC and corticospinal excit-
ability. In the first experiment, we examined the effects of otDCS
with individualized beta-band frequencies on CMC. In the second
experiment, we explored whether otDCS with individualized beta-
band frequencies modulated corticospinal excitability. We
employed a crossover design for Experiments 1 and 2, which were
conducted on different days to minimize the effects of isometric
contraction during CMC assessment on corticospinal excitability
[32]. In the third experiment, otDCS at 20 Hz was applied to
investigate whether a fixed beta-band frequency increases CMC.
The methods for each experiment are described in detail in the
following sections.

2.3. Transcranial electrical stimulation (tES)

tES was delivered by a DC Stimulation-Plus (NeuroConn, Ilme-
nau, Germany) connected to a pair of rubber electrodes. A ring
electrode for the anode (inner radius ¼ 1.00 cm, outer
radius ¼ 3.75 cm, area ¼ 41.0 cm2) was placed over the right leg
area of the motor cortex. Another oblong electrode for the cathode
(area¼ 35 cm2) was placed over the right forehead. A ring electrode
was used to record EEG signals for the assessment of CMC. The
center of the ring electrode was positioned at a vertex (Cz) that was
carefully identified using a tape measure according to the inter-
national 10e20 system for EEG electrode placement. We previously
found that this specific placement of the ring electrode could
induce an electric field over the left primary motor cortex [6]. The
stimulation frequency for otDCS and tACS was individually targeted
at the EEGeEMG peak beta-band frequency before stimulation
because an increase in the frequency band has been associatedwith
motor learning and motor recovery following stroke [1,6,10e13].
The stimulus intensity was set at 2 mA for otDCS (sinusoidal
waveform with an amplitude between 0 and 2 mA), tACS (sinu-
soidal waveform with an amplitude between �1 and 1 mA), and
tDCS. The stimulation duration was set to 10 min.

2.4. Electrophysiological recordings

EEG and EMG signals were recorded using Ag/AgCl electrodes
(10 mm diameter, 20 mm inter-electrode distance). The impedance
of electrodes was maintained under 5 kU throughout the experi-
ment. The EEG electrodes were placed at the vertex and 5 cm
anterior to the vertex because studies have established that CMC is
focalized around the vertex for the ankle muscles [1,2,4]. The EMG
electrodes were placed at the tibialis anterior (TA) muscle of the
right leg. EEG and EMG signals were band-passefiltered (EEG,
0.05e200 Hz; 5e500 Hz) using Neuropack MEB2200 (NIHON
KOHDEN, Tokyo, Japan). Both EEG and EMG signals were sampled at
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5000 Hz using NI USB-6363 and LabVIEW 2018 (National In-
struments, Austin, TX, USA) and stored on a computer for analysis.
3. CMC

Each participant was comfortably seated in a rigid chair with
his/her right foot firmly fastened to a force plate containing a strain
gauge that measured the force exerted on the plate. EEG and EMG
signals were recorded while the participants performed a static
isometric contraction of the TAmuscle, inwhich theywere asked to
maintain a force level of 10% maximal voluntary contraction for
2 min. The target force level was displayed on the screen as a
horizontal line, and the participants were instructed to follow this
line as precisely as possible with the moving red trace depicting
real-time force production [4]. The frequency-domain correlation
between EEG and EMG signals was estimated using the coherence
function |Rxy(l)|. The approximation produced has been thoroughly
described previously [7]. In brief, auto-spectra and cross-spectra
were computed by isolating signals into non-overlapping data
segments. Subsequently, Fourier transformations were performed
on these segments, and the data were averaged. The coherence
spectrum was then computed from the squared cross-spectrum
normalized to the product of the two auto-spectra as follows:

jRxyðlÞj2 ¼ jfxyðlÞj2
fxxðlÞfyyðlÞ

Serving as a frequency parallel to the correlation coefficient,
coherence reflects an index of the linear association between
electrophysiological signals from the cortex and muscle and is
quantified as a value between 0 and 1. Each recording was 120 s in
duration, and the sampling frequency was 5000 Hz. The segment
length was 4096, yielding segments per recording with a spectral
resolution of 1.22 Hz. The statistical significance of individual
coherence estimates was assessed according to the upper 95%

confidence limit, which was given by 1� ð0:05Þ
1
=ðL�1Þ, where L is

the number of disjoint sections [7]. Data analyses were conducted
usingMATLAB® (MathWorks, Natick, MA, USA).We adopted otDCS
and tACS by setting the stimulation frequency at the EEGeEMG
peak beta-band frequency. Corticomuscular coupling in the
15e35-Hz frequency range is greater during periods of steady
contraction, and it may reflect the discharge of corticospinal cells
[1]. Thus, the peak amplitude of CMC, defined as the difference
between the maximum positive amplitude and zero of a waveform,
within this frequency range was used for the analysis.
4. TMS

To assess corticospinal excitability, single-pulse TMS was
delivered to the M1 responsible for motor representation of the leg
with a double-cone coil that was connected to the Magstim 200
(Magstim Co., Whitland, UK). The stimulating coil was located
0e2 cm posterior to the vertex to induce current flow in a posterior
to anterior direction in the brain. The optimal coil positioning on
the hot spot of the M1 was identified for inducing the largest MEP
amplitude in the right TA muscle. The stimulation intensity was
adjusted to 120% of the active motor threshold, which was defined
as the minimum stimulus intensity that produced 200-mV MEPs
with a 50% probability during isometric contraction upon 100-mV
EMG of the TA muscle. Fifteen MEPs were recorded while the
participants performed an isometric contraction with 100 mV of
stimulation [33].
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4.1. Experiment 1: Effects of otDCS with individualized beta-band
frequencies on CMC

Nineteen healthy volunteers (aged 25 ± 3 years; eight women)
participated in a crossover study. The participants randomly
received otDCS, tACS, or tDCS on three different days. The order of
the stimuli was counterbalanced across the participants. EEG, EMG,
and torque signals were recorded to calculate CMC during 2 min of
isometric ankle dorsiflexion. First, the baseline CMC data were
measured to normalize the data. Next, the main assessments were
performed before (Pre), immediately after (Post0), and 10 min
(Post10) and 20 min (Post20) after stimulation. To prevent carry-
over effects from the previous intervention, washout intervals of at
least 3 days were applied between sessions.

4.2. Experiment 2: Effects of otDCS with individualized frequencies
on corticospinal excitability

Nineteen healthy volunteers (aged 25 ± 3 years; eight women),
12 of whom participated in Experiment 1, were enrolled in a
crossover study. The participants randomly received otDCS, tACS, or
tDCS on three different days. To assess changes in motor cortex
excitability, we applied single-pulse TMS to the leg motor cortex
before and after tES using the same parameters as those in Exper-
iment 1. Before the main assessment, the baseline MEPs were
measured to normalize the data. Following a 2-min rest period,
MEPs were assessed before (Pre), immediately after (Post0), and
10 min (Post10) and 20 min (Post20) after stimulation.

4.3. Experiment 3: Effects of the fixed beta-band frequency of otDCS
on CMC

Twenty-one healthy volunteers (aged 25 ± 4 years; nine
women), seven of whom participated in Experiment 1 only and 11
of whom participated in Experiments 1 and 2, were enrolled in a
beforeeafter trial. To investigate whether the specific frequency of
otDCS increases beta-band CMC, we applied otDCS of 20-Hz to the
right leg area of the motor cortex for 10 min using settings identical
to those used in Experiment 1. The baseline CMC data were
measured to normalize the data. Next, we measured the CMC
values before (Pre), immediately after (Post0), 10min after (Post10),
and 20 min after (Post20) stimulation.

4.4. Statistical analysis

The ShapiroeWilk test was performed to assess the normality of
all data. Because all data followed normal distribution (P� 0.05), we
performed the following analysis. Two-way repeated-measures
analysis of variance (ANOVA) was performed to assess the effect of
the interaction between the stimulus (otDCS, tACS, and tDCS) and
time (Pre, Post0, Post10, and Post20) on CMC in Experiment 1 and on
MEPs in Experiment 2. Paired t-tests with Bonferroni's correction
were employed for post-hoc analyses. For Experiment 3, one-way
repeated-measured ANOVA was performed to assess the main ef-
fect of time (Pre, Post0, Post10, and Post20) on CMC. We hypothe-
sized that 20-Hz otDCS increases CMC when the individual CMC
peak frequency is closer to 20 Hz. To test this hypothesis, Pearson's
correlation analysis was performed to investigate the relationship
between changes in normalized CMC and individual CMC peak fre-
quencies in Experiment 3. Changes in normalized CMC were calcu-
lated by subtracting the normalized CMC data at Pre from that at
Post0. Individual CMC peak frequencies were calculated as the nu-
merical difference between the 20-Hz and individual CMC peak
values before the stimulation. All statistical comparisons were
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performed using SPSS Statistics 24 (IBM, Armonk, NY, USA). Statis-
tical significance was set at P < 0.05 for all comparisons.
Fig. 2. The effect of oscillatory transcranial direct current stimulation (otDCS),
transcranial alternating current stimulation (tACS), and transcranial direct current
stimulation (tDCS) on normalized motor evoked potentials (MEPs). The MEPs are
normalized to the baseline values. The values are presented as the mean ± standard
deviation. Black (otDCS), gray (tACS), and white bars (tDCS) indicate the time course of
MEPs before (Pre), immediately after (Post0), and 10 (Post10) and 20 min (Post20) after
stimulation. Asterisks indicate significant differences between the time course and
within the interventions (*P < 0.05, **P < 0.01).
5. Results

5.1. Experiment 1

The mean CMC (standard deviation) values in response to
otDCS, tACS, and tDCS at baseline were 0.09 (0.14), 0.11 (0.13), and
0.09 (0.12), respectively. No significant main effect of the stimula-
tion task was observed at baseline [F(2, 36) ¼ 2.01, P ¼ 0.15].

otDCS immediately enhanced beta-band CMC, whereas tACS
and tDCS yielded no changes (Fig. 1). These results were supported
by a statistically significant interaction between time and stimu-
lation task [F(6, 108) ¼ 2.36, P ¼ 0.035]. The main effect of time was
also significant [F(3, 54) ¼ 6.21, P ¼ 0.001]. The stimulation task as a
main effect was not statistically significant [F(2, 36) ¼ 1.06, P¼ 0.36].
Post-hoc analyses revealed that otDCS resulted in a significant in-
crease in CMC at Post0 compared with that at Pre (P ¼ 0.0004). A
comparison of CMC values among stimulation tasks at Post0
revealed significantly higher values in response to otDCS than that
in response to tACS (P ¼ 0.009). To confirm the robust effect of
otDCS on CMC at Post0, we compared the CMC of tACS and tDCS at
Pre using one-tailed Student's t-test based on the hypothesis that
CMC and MEPs increase after otDCS according to the above-
mentioned results. The analysis revealed significantly higher CMC
in response to the otDCS condition at Post0 than that in response to
the tACS and tDCS conditions at Pre (both P < 0.05). The raw data
for CMC amplitudes are provided in the Supplementary Materials.
5.2. Experiment 2

The mean raw amounts (standard deviation) of the MEPs at
baseline were 0.62 (0.20) mV for otDCS, 0.72 (0.28) mV for tACS,
Fig. 1. The effect of oscillatory transcranial direct current stimulation (otDCS),
transcranial alternating current stimulation (tACS), and transcranial direct current
stimulation (tDCS) on normalized corticomuscular coherence (CMC). The CMC
values are normalized to the baseline values. The values are presented as the
mean ± standard deviation. Black (otDCS), gray (tACS), and white bars (tDCS) indicate
the time course of the CMC before (Pre), immediately after (Post0), and 10 (Post10) and
20 min (Post20) after stimulation. Asterisks indicate significant differences between
the time course and within the interventions (*P < 0.01, **P < 0.001).
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and 0.66 (0.37) mV for tDCS. No significant main effect of the
stimulation task was observed at baseline [F(2, 36) ¼ 0.87, P ¼ 0.43].

otDCS led to an immediate increase in corticospinal excitability,
but no changes were observed after tACS and tDCS (Fig. 2). These
results were confirmed by two-way repeated-measures ANOVA,
which revealed significant interactions between time and stimu-
lation task [F(6, 108) ¼ 2.76, P ¼ 0.016]. There was no main effect of
time [F(3, 54) ¼ 1.28, P ¼ 0.29] and stimulation task [F(2, 36) ¼ 0.54,
P ¼ 0.59]. Post-hoc analyses revealed that otDCS significantly
increased MEPs at Post0 compared with those at Pre (P ¼ 0.011). At
Post0, the MEPs for otDCS were significantly higher than those for
tACS (P ¼ 0.003). One-tailed Student's t-test was used to confirm
the robust effect of otDCS on MEPs at Post0. This analysis indicated
that MEPs in the otDCS condition at Post0 were significantly higher
than the MEPs in the tACS and tDCS conditions at Pre (both
P < 0.05).
5.3. Experiment 3

The time course of normalized CMC is presented in Fig. 3. One-
way repeated-measures ANOVA revealed no significant main effect
of time [F(3, 60)¼ 1.47, P¼ 0.23], indicating that 20-Hz otDCS did not
affect CMC. However, there was a significant negative correlation
between the changes in normalized CMC and the numerical dif-
ference between the 20-Hz and individual CMC peak frequencies
(r ¼ �0.556, P ¼ 0.009; Fig. 4).
6. Discussion

This study shows that otDCS with individualized beta-band
frequencies, but not tACS or tDCS, increased CMC and MEPs
immediately after stimulation. Moreover, normalized changes in
CMC induced by 20-Hz otDCS were correlated with the numerical



Fig. 3. The effect of 20-Hz oscillatory transcranial direct current stimulation
(otDCS) on normalized corticomuscular coherence (CMC). The CMC values are
normalized to the baseline values. The values are presented as the mean ± standard
deviation. Black bars indicate the time course of CMC before (Pre), immediately after
(Post0), and 10 (Post10) and 20 min (Post20) after stimulation.

Fig. 4. Correlations between changes in normalized corticomuscular coherence
(CMC) following 20-Hz oscillatory transcranial direct current stimulation (otDCS)
and the numerical difference between the 20-Hz and individual CMC peak fre-
quency before the stimulation. The delta changes in normalized CMC were calculated
by subtracting the baseline values from those immediately after 20-Hz otDCS. The CMC
peak frequency values show the numerical difference between the 20-Hz and indi-
vidual CMC peak frequency before the stimulation.
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distance between 20 Hz and the individual CMC peak beta-band
frequency before the stimulation, indicating that 20-Hz otDCS
increased CMCwhen the individual CMC peak frequency was closer
to 20 Hz. Our findings provide the first evidence that otDCS with
individualized oscillatory activity at beta frequency can enhance
the communication between the motor cortex and spinal motor
neurons.
50
6.1. Effects of otDCS with individual frequencies on CMC

The enhancement of CMC, which reflects pyramidal system
activity, leads to an increase in the functional coupling between M1
and spinal motor neurons [5,8,9]. The reason for this enhancement
is that otDCS, which possesses elements of AC and DC, might in-
crease and enhance the entrainment of corticospinal pyramidal
neuron oscillation in M1 [14]. tACS at the frequency of endogenous
neural oscillation modulates the spike timing of inhibitory and
excitatory neurons without changing the average firing rate [14].
Anodal tDCS affects the firing rate by increasing glutamate and
GABA levels [14,16]. Furthermore, several studies reported that the
effects of tACS are more pronounced online to stimulation when
entrainment is more prominent [25,29,34,35]. Therefore, the
summations of enhancement spike timing and increases in the
firing rate induced by otDCS may have enhanced the targeted CMC
in the present study. This hypothesis is supported by the results of
Experiment 3, in which participants with CMC peak frequencies
closer to 20 Hz displayed increased CMC in response to otDCS of 20-
Hz. These results could be attributable to spike timing-dependent
plasticity (STDP), which postulates that the repetitive input
similar to resonance frequency is strengthened according to the
STDP rule during stimulation [24,36]. These data supported our
findings that individualization of the beta-band frequency of otDCS
could represent a valid strategy for enhancing communication in
corticospinal pathways between M1 and spinal motor neurons.
6.2. Effects of otDCS with individualized frequencies on
corticospinal excitability

The corticospinal excitability of the TA muscle increased after
otDCS but not after tACS and tDCS. In agreement with previous
studies on tACS using individualized or fixed beta-band frequencies
over M1, no offline effects on corticospinal excitability were
observed [29,37,38]. This is supported by another study that re-
ported that tACS genuinely entrains neural network activity during
stimulation, whereas the effects did not persist when the stimulus
was withdrawn [35]. Thus, the effects of tACS on corticospinal
excitability may only reflect the ongoing stimulation.

Our results disagree with those of a previous study, which
revealed that anodal tDCS could temporarily increase corticospinal
excitability in healthy individuals [15,27,28]. Many studies found
that 20%e60% of individuals experienced a classical increase in
excitability following a single anodal tDCS session, whereas the
remaining participants experienced no change or exhibited a
decrease compared with baseline values [39]. Additionally, a recent
large study reported that tDCS does not reliably affect cortical
excitability [40]. tDCSmodulates the restingmembrane potential of
neuronal populations via ionic adjustment of the extracellular
space and synaptic activity in a manner similar to long-term
potentiation [41]. However, in the absence of changes in the bal-
ance of excitability and inhibitory drive that is assumed to underlie
beta oscillatory activity, tDCS fails to change synaptic strength [42].
In fact, TMS delivered at a particular phase of beta oscillation
induced MEPs with greater amplitude and less variability based on
state-dependent gain modulation [43e46]. Thus, tDCS, which did
not alter the specific oscillation, might be more variable.

In contrast, otDCS can change the resting membrane potential
for depolarization and the firing pattern of the stimulated neurons
[14,19]. In vitro experiments revealed that neuronal network ac-
tivity can be entrained by sinusoidal electric fields with an intensity
similar to that of the endogenous electric field of that network [26].
To increase corticospinal excitability, it may be essential for AC to
superimpose onto DC to induce neuronal depolarization [27,28].
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6.3. The relationship between changes in CMC and MEPs induced
by otDCS with individualized frequencies

It is speculated that increased corticospinal excitability induced
by otDCS depends on the enhancement of beta-band CMC. A study
reported a correlation between CMC and changes in MEP induced
by peripheral electrical stimulation [47]. Another study reported
that cortical oscillation modulates the firing rate of motor cortical
efferent commands [48]. Therefore, the increase in beta activity
induced by otDCS in the motor cortex involving pyramidal neurons
may increase corticospinal output as an index ofMEP in response to
TMS [43e46]. However, in the present study, CMC and MEPs were
measured in separate experiments. Further research is needed to
simultaneously examine the changes of corticospinal communica-
tion and excitability induced by otDCS.

6.4. Clinical applications

Previous studies reported that poor communication between
the M1 and spinal motor neurons may reflect an underlying
mechanism that causes movement disorders in patients with
stroke [49,50]. Increasing beta-band CMC is associated with motor
learning in healthy individuals and motor function recovery after
stroke [1,6,10e13]. otDCS may be effective as an adjuvant therapy
with rehabilitation, whereas its long-term effects may promote
motor recovery after stroke.

7. Limitations

The sample size of the present studywas relatively small. Hence,
some results, such as the lack of differences between the otDCS and
tDCS conditions for CMC and MEPs immediately after the stimu-
lation, should be interpreted with caution. Additionally, the study
included healthy participants having distinctive beta-band CMC
values. A previous study reported that patients with nervous sys-
tem disorders have lower CMC than healthy participants [5]. Thus,
it is unclear whether similar results would be obtained in partici-
pants with no significant beta-band CMC. Further research is
needed to investigate the effects of otDCS with individualized beta-
band frequencies on CMC and motor performance in patients after
stroke.

8. Conclusions

The present study indicates that otDCSwith individualized beta-
band frequencies increased CMC and MEPs in healthy individuals,
whereas tACS and tDCS had no such effects, suggesting that mod-
ulation of the firing pattern and rate of M1 with individualized
frequencies plays an important role in simultaneously enhancing
corticospinal oscillation and excitability. However, no significant
difference was observed between the otDCS and tDCS conditions
after the stimulation. Further studies are warranted to clarify the
clinical application of otDCS with individualized beta-band fre-
quencies in patients with neurological disorders.
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