Estimation of Mixed Venous CO₂ Tension and QRS Electrical Axis From Simple Mathematical Considerations

Katsuo UCHIDA, Ph.D.

Abstract: Simple mathematical formulations are introduced to obtain mixed venous carbon dioxide tension ($P\overline{\nu}CO_2$) and mean electrical axis of the ventricles (θ). A linear decrease in O_2 and an exponential increase in CO_2 concentrations of alveolar gas during rebreathing are shown to be essential for the estimation of $P\overline{\nu}CO_2$. The QRS electrical axis was usually obtained from a graphical analysis using Einthoven's triangle with peak height differences between the R and S waves. The θ value is calculated from a simple trigonometric function instead of the graphical analysis. These examples indicate that elementary mathematics is useful in physiology to make clear physiological meaning behind observed phenomena.

Key words: elementary mathematics, mixed venous CO2 tension, QRS electrical axis

Introduction

For the evaluation of cardiac output with direct Fick's method, mixed venous CO_2 tension ($P\overline{v}co_2$) is necessary together with arterial CO₂ tension (Paco₂). Paco₂ can be measured directly by taking arterial Alveolar Pco₂ (P_Aco₂) is also a good approximation of Paco₂. However, Pvco₂ cannot be measured easily because of the sampling difficulty of mixed venous blood. Indirect estimation of Pvco2 has been studied by a rebreathing method (Defares, 1958: Mochizuki et al., 1984; Uchida et al., 1986; Vanhees et al., 2000). A rebreathing system is generally composed of the lung and a bag containing the air. Neglecting a dead space compared with a tidal volume, we can approximate Pco2 in the bag during rebreathing as P_A co₂. Since the rebreathing system is a closed system, CO2 is accumulated and $P_{A}co_{2}$ rises. With the progress of the $P_{A}co_{2}$ increase, diffusion of CO2 from the mixed venous blood to alveoli is reduced, and finally the diffusion is stopped when $P\overline{v}co_2 = P_Aco_2$. Therefore, we can get an information on the blood $(P\overline{v}co_2)$ from that on the gas (P_Aco_2) without taking the blood. In this report fundamental relations necessary to estimate $P\overline{v}co_2$ from the O_2 and CO_2 concentrations during rebreathing are shown.

The standard mean electrical axis of the ventricles (θ) is 59 degrees, which is changed markedly in certain pathological conditions (Guyton, 1976). The θ value was usually determined from a graphical analysis of the standard leads electrocardiogram (ECG) using Einthoven's triangle. Projections of differences in peak heights between the R and S waves on the axes of leads I and III schematically give the θ value. Instead of the graphical analysis, θ is here shown to be obtained from an elementary mathematical consideration.

Estimation of Pco₂ of the mixed venous blood

 P_{A} co₂ rises exponentially during rebreathing (Defares, 1958), while alveolar Po₂ (P_{A} o₂) is decreased linearly (Mochizuki *et al.*, 1984; Uchida

Department of Physical Therapy, Yamagata Prefectural University of Health Science, Yamagata 990-2212, Japan

et al., 1986). Such a contrast in O_2 and CO_2 concentrations during rebreathing is due to the differencthees in pressure gradient between the alveolar gas and the mixed venous blood. The pressure gradient of CO_2 is about one tenth of that of O_2 , and the equilibration between P_ACO_2 and $P\overline{v}CO_2$ is attained within a contact time of the mixed venous blood with the alveolar gas. According to these observations, time dependence of the O_2 and CO_2 concentrations during rebreathing can be written as

$$F(t) = \mathbf{a} - \mathbf{b}t \tag{1}$$

$$G(t) = G_{\infty} - (G_{\infty} - G_{0}) \exp(-kt)$$
, (2)
where $F(t)$ and $G(t)$ are time dependent
concentrations of O_{2} and CO_{2} in a rebrething gas, and
a, b and k are positive constants (Fig.1). G_{0} and G_{∞}
are CO_{2} concentrations at the start and the end of

are CO₂ concentrations at the start and the end of rebreathing, respectively. Time dependent alveolar O₂ and CO₂ pressures are given by

$$P_{AO_2}(t) = (P_B - 47) F(t),$$
 (3)

$$P_{A}co_{2}(t) = (P_{B} - 47) G(t)$$
 (4)

where $P_{\rm B}$ is a barometric pressure and 47 Torr is saturated water vapor pressure at 37 °C. At the start of rebreathing (t=0), $P_{\rm A}o_2(0)$ and $P_{\rm A}co_2(0)$ are calculated from the initial alveolar O_2 and CO_2 concentrations $(F_0$ and $G_0)$. At the end of the rebreathing $(t \to \infty)$, the limiting $P_{\rm A}co_2(t)$, which is equal to G_{∞} corresponds to $P_{\rm V}co_2$ because of the equilibration of CO_2 tension between the alveolar gas and the mixed venous blood.

Neglecting the lung volume change during

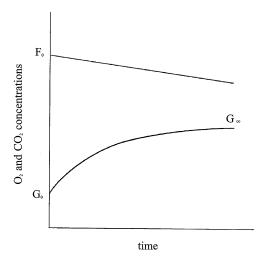


Fig. 1 Changes in O_2 and CO_2 concentrations of alveolar gas during rebreathing

rebreathing, we have Vo_2 and Vco_2 as follows:

$$\dot{V}_{O_2} = -V(dF(t)/dt) = Vb \tag{5}$$

 $V\cos_2 = V(dG(t)/dt) = Vk(G_\infty - G_0)\exp(-kt)$ (6) Equation (5) shows that $V\cos_2$ remains constant even in rebreathing, and Eq. (6) shows that $V\cos_2$ is decreased exponentially with the time. From Eqs. (5) and (6), respiratory quotient (RQ) is given by

$$RQ = (k/b) (G_{\infty} - G_0) \exp(-kt), \qquad (7)$$
which is rewritten with Eq. (2) as

$$RQ = (k/b) \{G_{\infty} - G(t)\}. \tag{8}$$

Substituting G(t) in Eq. (4) for that in Eq. (8), we have

$$RQ = -(k/b) P_A \cos_2(t)/(P_B - 47) + (k/b)G_\infty$$
. (9) Decreasing $\dot{V}\cos_2$ and constant $\dot{V}o_2$ during rebreathing give rise to a linear reduction of RQ against the $P_A\cos_2(t)$ increase (Eq. (9)). The limiting value G_∞ is equal to the $G(t)$ value when $RQ = 0$, reflecting the fact that at this stage no CO_2 output occurs because of the disappearance of pressure gradient between alveoli and mixed venous blood. Therefore,

 $P\overline{v}$ co₂ = (P_B-47) $G_{\infty} = (P_B-47)$ $G(t)_{RQ=0}$. (10) Mochizuki *et al*. (1984) developed a method to obtain $P\overline{v}$ co₂ from a linear relation between P_{Λ} co₂ and RQ during rebreathing. The above discussion shows that their method is based on the fundamental two relations given by Eqs. (1) and (2).

Estimation of the QRS electrical axis

The QRS electrical axis (θ) of ECG was usually obtained using the differences in peak heights between R and S waves for the leads I and III (Fig.2). In this figure, O is the middle point of Einthoven's triangle, and A is an intersection point with the projections of leads I and III. Segments OB and AC correspond to the peak height differences between the R and S waves for the leads I and III, and are represented here I and III, respectively. The θ value is obtained by measuring the angle \angle BOA. It should be noted that \angle BOC = \angle BAC = 30°, and therefore \angle OAC = \angle OAB + \angle BAC = (90° - θ) + 30° = 120° - θ . Referring to the two triangles \triangle OAB and \triangle OAC in this figure, we have

$$OA\cos \theta = OB = I \tag{11}$$

$$OA\cos(120^{\circ} - \theta) = AC = \mathbf{III}. \tag{12}$$

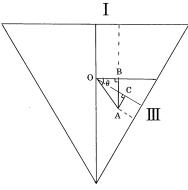


Fig. 2 Relation between the QRS electrical axis and peak heights of the standard leads ECG

From Eqs. (11) and (12)

 $(-1/2 \cdot \cos \theta + \sqrt{3}/2 \cdot \sin \theta) / \cos \theta = \mathbf{III} / \mathbf{I}(13)$ Therefore,

$$\tan \theta = 2/\sqrt{3} \, (\text{III} / \text{I} + 1/2) \,.$$
 (14)

The QRS electrical axis θ can be calculated as follows without drawing a diagram like Fig. 2:

$$\theta = \tan^{-1} \{ 2/\sqrt{3} (\mathbf{III} / \mathbf{I} + 1/2) \}$$
 (15)

References

Defares, J. G.: Determination of Pvco₂ from the exponential CO₂ rise during rebreathing. *Journal of Applied Physiology* 13, 159-164, 1958

Guyton, A. C.: Textbook of Medical Physiology (pp. 203-204). Philadelphia, W. B. Saunders Company, 1976.

Mochizuki, M., Tamura, M., Shimasaki, T., Niizeki, K., and Shimouchi, A.: A new indirect method for measuring arteriovenous O₂ content difference and cardiac output from O₂ and CO₂ concentrations by rebreathing air. *Japanese Journal of Physiology* 34, 295-306, 1984.

Uchida, K., Shibuya, I., and Mochizuki, M.: Simultaneous measurement of cardiac output and pulmonary diffusing capacity for CO by a rebreathing method. *Japanese Journal of Physiology* 36, 657-670, 1986.

Vanhees, L., Defoor, J., Schepers, D., Brusselle, S., Reybrouck, T., and Fagard, R.: Comparison of cardiac output measured by two automated methods of CO₂ rebreathing. *Medicine and Science in Sports and Exercise* 32, 1028-1034, 2000.

Received: October 30, 2000. Accepted: February 5, 2001.